Oscillations of SN neutrinos: a few more observations

Alexander Friedland

LANL

INFO 11

July 22, 2011

Back to supernova neutrino oscillations: a few FAQs

- What kind of physics is involved?
 - Do you really need theorists for this?
- Why should I worry about this now if the SN 2027 is more than a decade away?
- Why should this be part of the science case for LBNE?
- Turbulence is messy. Can it be treated robustly?
- Do you really need 3 flavor multi-angle calculations?
 - Why should I trust your codes?

What kind of physics is involved?

Relevant physical processes (a cartoon)

This is where many branches of physics converge

- Astrophysics, broadly defined
- Plasma physics, turbulence, etc
- Many-body physics
- Particle physics
- Nuclear physics
 - E.g., nucleosynthesis
- Numerical modeling

Why now?

- A priori, oscillations can impact
 - Nucleosynthesis
 - Explosion (?)
 - Signal observed in terrestrial detectors
- Our understanding of the expected signal may inform detector design
 - People are used to thinking about supernova neutrinos as something that can always wait.
 - Prime example: LBNE. Characteristics of the LBNE detectors are will be decided very soon.

Shouldn't LBNE have a simple science case?

■ LBNE ■ LHC:

Measure the delta

Which do you think will capture peoples eating a new world of imagination?

Snapshot taken this morning from http://www.uslhc.us/LHC Science

Let's try again

- LBNE:
 - CP violation
 - Precision tests of neutrino-matter interactions
 - TeV-scale BSM physics
 - New weakly interacting particles
 - Peering inside an exploding star
 - Origin of heavy elements in the Universe
 - Neutrino oscillations in the regime inaccessible on Earth
 - Sounds more interesting to me, even without "Einstein's dream", etc

More complications: 3D simulations show turbulence

- 3d simulations of the accretion shock instability Blondin, Mezzacappa, & DeMarino (2002)
- See http://www.phy.ornl.gov/tsi/pages/simulations.html
- No central heating. Still,
 - extensive, well-developed turbulence behind the shock

More 3D simulations

- beautiful simulation from the web page of K.Kifonidis http://www.mpagarching.mpg.de/~kok/
- Neutrino flavor
 transformations happen
 in the dynamically
 changing profile of the
 expanding shock and
 turbulence

Turbulence and MSW

- The level-jumping probability now depends on fluctuations
 - relevant scales are small, O(10 km)
 - take large-scale fluctuations from simulations, scale down with a Kolmogorov-like power law
 - contributions of different scales to the level-jumping probability are given by the following spectral integral

$$P \simeq \frac{G_F}{\sqrt{2}n_0'} \int dk C(k) G\left(\frac{k}{2\Delta \sin 2\theta}\right), \qquad G(p) \simeq \frac{\Theta(p-1)}{p\sqrt{p^2-1}}.$$

for details, see Friedland & Gruzinov, astro-ph/0607244

To gain some intuition, consider spin representation

- Like any two-state QM system, the neutrino flavor state can be thought of as a spin. We can depict its evolution by showing the trajectory of the expectation value of the spin, $\langle \nu | \vec{\sigma} | \nu \rangle$, on a sphere
- The oscillation Hamiltonian acts as an external magnetic field. The matter potential changes the z-component of the field. $H(r) = \frac{\Delta m_{\rm mat}^2}{2E_{\nu}} \begin{pmatrix} -\cos 2\theta_{\rm mat} & \sin 2\theta_{\rm mat} \\ \sin 2\theta_{\rm mat} & \cos 2\theta_{\rm mat} \end{pmatrix} = \vec{H}(r) \cdot \vec{\sigma}$
- In the adiabatic case, the spin follows the changing "magnetic field".

Turbulence makes neutrinos diffuse in the flavor space

- Need to estimate the rate of diffusion
 - Given large-scale fluctuations in published simulations (order 1), completely depolarized regime

$$ho_{final}
ightarrow egin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

Observable effect

 To achieve complete depolarization, density fluctuations on large scales need to satisfy

$$\frac{\delta \rho_r}{\rho_r} \gtrsim 0.1 \theta_{13}^{1/3}$$

Details in A.F., A. Gruzinov, astro-ph/0607244

 Simulations show order one fluctuations → criterion satisfied and by a large margin

We are here

Collective motions in action

 Here is the evolution of the collective mode as a function of radius in one of our 2-flavor (single-angle) calculations

Different regimes

- For some initial spectra, multiple spectral splits
- For other conditions, only lowenergy split features
 - This can be potentially very significant: high energy features easily observable
- If we understand the phase diagram, we can read a lot about the fluxes in all flavors from the signal

Fig. from Dasgupta, Dighe, Raffelt, Smirnov, arXiv:0904.3542 [hep-ph] -> PRL (2009)

3-flavor effects

- adding solar ∆m_o² can drastically change the evolutions
- At first glance, this result is extremely weird:
 - At ∆m₀²=0, 2-flavor result is reproduced
 - As soon as $\Delta m_{\odot}^2 \neq 0$, the answer is closer to the realistic Δm_{\odot}^2 than to $\Delta m_{\odot}^2 = 0$

For details, see A. Friedland, Phys. Rev. Lett. 104, 191102 (2010)

3-flavor pattern of transitions

- E_{ν} < 6 MeV:
 - no permulations
- 6 MeV < E_v < 10 MeV
 - $\mathbf{v}_1 \rightarrow \mathbf{v}_1, \mathbf{v}_2 \leftrightarrows \mathbf{v}_3,$
- 10 MeV < E_v < 20 MeV</p>
 - $\mathbf{v}_2 \rightarrow \mathbf{v}_3, \mathbf{v}_3 \rightarrow \mathbf{v}_1, \mathbf{v}_1 \rightarrow \mathbf{v}_2$
- **■** $E_{v} > 20 \text{ MeV}$
 - $\mathbf{v}_1 \leftrightarrows \mathbf{v}_2, \mathbf{v}_3 \longrightarrow \mathbf{v}_3$

For details, see A. Friedland, Phys. Rev. Lett.104, 191102 (2010)

Lastly, single- vs. multi-angle

Varying luminosity of the <u>nonelectron</u> flavors
Single-angle calculations

This is dangerous!

- Calculations of collective transformations assume the free-streaming regime
 - i.e., oscillations and collisions are separated
 - at the very least, results have to pass a consistency check
- If oscillations start close to the neutrino-sphere, they could affect transport/decoupling
 - Implications for the SN transport paragidm?

Multiangle suppression

Supernova models saved

From Duan & Friedland, Phys. Rev. Lett. 106, 091101 (2011)

Complicated pattern in energy-emission angle space

see Duan & Friedland, PRL (2011)

Multiangle problem

Figure from Qian & Fuller, astro-ph/9406073

■ Multiangle calculations: 10³ energy bins and 10⁴ angle bins: some computing required!

Impact on the r-process

Duan, Friedland, McLaughlin, Surman, arXiv:1012.0532, J.Phys.G38:035201,2011.

- Strategy:
 - Take the "usual" setup by the r-process people -- no special tunings or modifications
 - Compute collective oscillations starting with the "usual" late-time spectra [Keil, Janka, Raffelt (2003)]
 - See what happens
 - "Ridiculously simplistic model"

Need to be computed well

Where exactly the
 oscillations start and
 how they develop
 during the first 100 km
 is crucial for the r process
 nucleosynthesis

Sensitive to emitted spectra

- Details of the emitted spectra matter
- As the collective
 oscillations go into
 different regimes, so
 do the yields

Code validation?

- Since the field crucially relies on the supercomputer codes, how do we validate the codes?
 - E.g., in cosmology people did N-body code comparison projects
- Take codes by different people
 - who haven't seen each other's codes
- Run the same test problem
- Compare results without tweaking

- As I understand, this was how the original results were computed
 - Comparison between Huaiyu's and Joe's codes
 - Also, the Bari group wrote a multiangle code, and seemed to agree with Duan et al
- I did some comparisons between my and Huaiyu's code
 - Take codes by different people
 - who haven't seen each other's codes
 - Run the same test problem
 - Compare results without tweaking

r = 140 km

r = 150 km

r = 180 km

$r = 1000 \, \text{km}$

Onset depends on Lx, Le fluxes

implications for nucleosynthesis (see Huaiyu's and Gail's talks) always suppressed at small r

Detector simulations wc

LAr

- Calculations by the SN burst working group
 - Kate Scholberg et al

Summary

- The physics of supernova neutrino oscillations is extremely rich, much more interesting than thought 10 years ago!
- Collective modes, changing density profile, stochastic fluctuations ...
- The ingredients are all known physics → not optional
- "Neutrino-vision": observing the explosion in real time
- Neutrino parameters: hierarchy, theta_13
- Matter at nuclear densities. r-process. Testing physics beyond SM
- We are handing a gift to the LBNE community, they should embrace it, not be afraid of it;-)